Engineering Contributions to Urban Heritage Conservation

C F Lee

Some Examples

Enhancing structural safety of historic buildings through

-strengthening (to meet safety standard or upgraded design standard) -seismic retrofitting

Shek Kip Mei---first public housing estate in Hong Kong, built 1954

Note structural reinforcement

International Library of Children's Literature -completed in 1906, Tokyo, Japan -formerly part of Imperial Library and National Diet Library

Seismic retrofit 1996-98 Installation of seismic isolators

Laminated rubber isolator

Damper

Nakanoshima Kokaido, Osaka -public hall (with concert hall), built 1896 -seismic retrofit in 2000, after Kobe earthquake of 1995; isolation techniques used

Traditional wooden buildings in Japan

(a) Shrine in Matsue

(b) Temple in Kyoto

(c) Houses in Kanazawa

Vibration test on full-scale model of Japanese temple

The Golden Gate Bridge---Need for seismic retrofit, following Loma Prieta earthquake of 1989

The Golden Gate Bridge

Three phases of retrofit for the Golden Gate Bridge:

- Phase 1: retrofit the Marin (north) Approach Viaduct (completed in 2002)
- Phase 2: retrofit the San Francisco (south) Approach Viaduct, San Francisco (south) Anchorage Housing, Fort Point Arch and Pylons S1 and S2 (to be completed in 2007)
- Phase 3: retrofit Main Suspension Bridge and Marin (north) Anchorage Housing (to be completed in 2012)

Phase 1

- Strengthening of foundations
- Replacement of 4 supporting steel towers
- Lateral bracing + vertical truss
- Isolator bearings + expansion joints

Hearst Memorial Mining Building at UC Berkeley

-seismic retrofit with base isolation + reinforcement
-following a 4-year seismic upgrade and renovation project, the building was reopened in 2002 and is one of the most striking architectural structures on campus

Martin Luther King Jr. Civic Center in Berkeley, California

Seismic renovation of the Building includes a state-of-the-art base isolation system. The completed building now rests on eighty-eight (88) lead rubber-bearing isolators and steel sliders, installed in the basement of the six-story structure. This system introduces a moat around the entire building perimeter to allow the base isolated building to move up to 30 inches in any direction.

111 Sutter Street, San Francisco

-a 24-storey 1920's vintage steel-framed office building. The retorfit scheme included column strengthening and strategically placed concrete shear walls

Asian Art Museum Seismic Retrofit, San Francisco -the original building was the "old" Main Library, which was opened in 1917

The Letitia Building in San Jose (built in 1889) -seismic retrofit with shoving, framing and basement addition

Memorial Church at Stanford University

Pasadena City Hall (built in 1927)

In 2003, the City Council approved a plan for the seismic retrofit (through base isolation) historic restoration and infrastructure improvements of the City Hall.

Salt Lake City and County Building (built 1894) -seismic retrofit to accommodate a design basis earthquake of 0.2g, using lead rubber base isolators in 1989

Two important preservation principles in undertaking seismic retrofit projects:

- Historic materials should be preserved and retained to the greatest extent possible and not replaced wholesale
- Respect the character and integrity of the historic building

Restoration of historic building in Northridge California, after 1994 earthquake

Tying vulnerable elements together and repointing masonry

Damage of joints and prevention

Figure 5. Alternative damage mechanisms for exterior tee-joints: a, b) beam bars bent inside the joint region; c) beam bars bent outside the joint region; d) plain round beam bars with end-hooks: "concrete wedge" mechanism (picture on right side)

Figure 6. Typical reinforced concrete detail

8009

SECTION BB

[Credit: Connell Wagner Consultants Ltd.]

Significant seismic risk in southern Europe (Italy, Greece, Yugoslavia) need for seismic retrofit as well; increasing interest and many research studies reported

The Leaning Tower of Pisa, Italy

The Leaning Tower of Pisa

Engineering measures taken in mid-1990's to prevent possible collapse

- Reversal of tilting movement by controlled removal of soil (via inclined boreholes) and induced subsidence of foundation on the north side of the tower (i.e. least compressed side)
- Sub-horizontal anchor stays as temporary safeguard during stabilization works
- Reduction of inclination by half a degree to 5°, with little change in visual impact

Leaning Tower of Huqiu 虎丘塔

Similar technique used to stabilize and control the differential settlement of the Huqiu Tower, built in A.D.959-961, Suzhou, Jiangsu, China

Leaning buildings due to differential settlement

Dunhuang Cave Temple (敦煌)

Stabilization of Caves

Relocation of ancient temple, Abu Simbel, Egypt, due to construction of Aswan Dam and Lake Nassar

Preservation of relics---Three Gorges Project Stone Fish in Fuling (涪陵石魚)

Stone Fish in Fuling

Stone engravings of low water levels 四川涪陵 枯水題記

Underwater Museum of Ancient Hydrographic Records

Chang Fei Temple, Yunyang

Slope stabilization to reduce landslide hazard

Protecting historic buildings against landslide hazards

The Hong Kong Experience

Stabilizing buildings against landslide in the 1920's

Landslide threat on historic building, June 12, 1966

A number of landslides occurred at the Ten Thousand Buddhas' Monastery, causing extensive damage

Old Halls, The University of Hong Kong

Hong Kong is now a leader in landslide hazard mitigation

Thank You!